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A PROBABILISTIC THEORY OF ANTI-SUBMARINE WARFARE MODELS 

DEVELOPED IN TERMS OF CONGESTION THEORY 

By 

Brian W, ConoFly 

ABSTRACT 
s " ■■ ■—-— 

\ , 

This report, which is methodoiogicai, develops a probabilistic 

theory that has direct application to both antisubmarine 

warfare and congestion models.  The theory is expressed m 

congestion terminology because of the presumed wider knowledge 

and appeal of this field»  This results in a simplified 

presentation of the general theory of infinite service   , ." 

facility systems with specific application to  M/Y/as  and 

X/M/«,some of which have already been studied by Takacs and 

Khintchineo  A new result is given for the output of the 

latter process,.  The analogy between certain infinite 

service facility systems and a single-server system with 

queue length dependent service is exploited to provide results 

for the latter process„  A further new result for the busy 

period of such a process is quoted.  The antisubmarine 

applications are to the formally similar models of the number 

of units present in a geographical area, and to the attrition 

of an enemy submarine force subjected to a steady threat from 

an antisubmarine barrier that  geographical or other 

constraints compel it to transit , 

v 

\ 
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INTRODUCTION 

This report is concerned with the theory of a probabilistic 

model that may be used to describe generalized situations 

that arise in a military context, in particular in anti- 

submarine warfare.  One situation is as follows2  Units 

arrive at the boundary of a geographical area in which 

they propose to spend some time.  They may be ships about 

to cross an ocean or strait, singly or in convoy; or they 

may be submarines going on patrol.  In a non-military 

situation they may be cars entering a car park, or 

prospective clients arriving at a supermarket.  As long as 

the units are not prevented from achieving this objective 

they may be described in the language of Congestion or 

Queueing Theory as "customers" entering a service facility 

with infinite capacity, that is to say, one that can provide 

service to any unit demanding it. 

In these situations one needs to make statements about ti.e 

total number of units in the area at any given time, and 

about the number of units that leave the area in a given 

time interval.  These are respectively the content of the 

rea, and the output from the? area.  In a defensive situation 

one might be interested in the number of merchant ship- in 

n area subjected to a submarine, or other, threat simply 

because one wants to know the scale oi protection it is 

required to provide.  From the same point of view, one is 

likely to want to know the raagvJtude of an enemy threat in 

the area in order to be able co assess the level of forces 

required to subdue it.  The output from an area Ls equally 

of Interest, particularly if the "service time11 within the 

area includes the possibility of destruction as well as 

sa ce t ransi t. 

a 
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Numerical statements about content and output are most easily 

made in deterministic terms.  Thus, suppose the content of 

an area at time  t  is  ^(t) units, while the rate of 

arrival at the boundary is  X units per day and the mean 
-i 

time required by each unit to transit the area is \j.       days. 

Then the mean number of units leaving the area per day will 

be  |i^  and we shall have 

f|  = X-U5 , [Eq- 1] 

so that if  X  and  y  are time independent and  §(0) = E,0, 

lit)   =  ?0 e-
ut + p(l - e"^), [Eq, 2] 

where  p = \/^.     The output  TV(T)  from the area in the 

interval  (CK T)  is then 

nT 
Tl(T) - u ?(t) dt 

0 

^0(l-e-
Wl) + p f(T) [Eq, 3] 

where 

f(T) -   ^T - (1 - e-uT) 

Predictions made on the basis of su-h a theory can be usetiil 

as indicators, but what is really needed in a more operationally 



realistic treatment is a description of  ?(t)  and  r|(t) 

in probabilistic terms.  This can be achieved by studying 

the basic quantities 

pn(t)  - Pr %it)   = n 

and 

vn(t)  - Pr  n(t) = n 

with suitable initial conditions.  These are not, however, the 

only probabilities of interest in an operational study.  The 

duration of time, for example, when  ?(t) >N, where  N  is some 

prescribed number, is also of interest, both in relation to 

targets and to the threat. 

The same model can be used to describe the losses to an enemy 

force of submarines that, in order to operate, has to cross an 

antisubmarine barrier where a constant kill rate per transit 

can be applied.  Let  ^(t)  be the number of enemy submarines 

on operational strength at time  t,  and  X  the building 

rate.  If ail submarines are used, then the rate of arrival 

at the barrier is proportional to  ?(t), and the number 

destroyed per unit time can be written  u?(t).  Thus, 

deterministically, 

X - U? , 

which is the same formal model as that given in Eq. 1 and 

the same probabilistic theory will apply. 



It will be noticed that the deterministic di t'terential equation 

given above is suggestive oi radioactive decay-,  Familiarity 

with warfare models of the Lanchester type and with epidemjc 

and struggle-for-survival models in ecology will lead to the 

recognition that the model belongs also to this family, though 

with less complexity in that we are not dealing direct.ly 

with the interaction of two speeies«  More generally the 

model is a particular kind of bxrth and death process. 

In the language of Queueing Theory the problem of making a 

probabilistic descripti «-»n of the content  c(t.)  of a 

geographical area is known as Erlang'a Problem for an 

Infinite Collection.  Erlang was specifically concerned with 

the application to telephone exchanges and in this conrr^xt £,(i) 

is the number of calls in progress at time  t,  Since Queueing 

Theory and its terminology are widely known it seems appropriate 

to proceed with the development of the theory in the queueing 

theoretic context, not: forgetting the wide range of applications 

in other spheres of activity.  In the terminology of queueing 

theory, "units" are referred to as 'clients" or "customers' ,, 

Their "service time" is the time spent m the "service facility' 

or' geographic area.  The; "input" to the "system" consists of a 

description of the intervals of time separating the arrivals 

of successive customers unit s at the? service facility.  A 

principal objective of this report ;s a sirplified expos it ion 

of the piobabilistic theory of intinitc capacity service 

systems that are formally identical to the military model 

discussed in the previous' paragraphs, 

A mathematical des( ript ion of service systems requires a 

specification in probabilistic terms, where appi opn ate, ot 

the1 input , the servii e t i me , in some cases the "queueing 

discipline" (the older in wh it h customers are served, for 

example), as well as of the number of service points.  On the 

basis of these one makes probabilist ic statements about how 

long a t pical customer lias to ua i t . the length of the 

un i n t er rupt ed per i ods di. i i ng wh i < h t he 1 a< i 1 i t v is kept busy , 

the interval ol time between successive depaitures I rom the 



System, and so on.  To these may be added Erlang1s Problem, 

which is also of particular interest to the designers of 

supermarkets and doctors' waiting rooms, as well as to 

those whose task it may be to protect shipping against 

enemy submarines about which the only thing known is a 

description of the input and cycle time in probabilistic 

terms. 

Erlang's Problem for a finite collection is rather intractable, 

particularly where so-called exact finite time results are 

concerned.  These are required when one wants to make 

statements about  ?(t), which it will be recalled is the 

total number of units present at time  t  after the system 

was initiated, rather than about how  §(t)  behaves in the 

long run.  It turns out, on the other hand, perhaps at first 

sight surprisingly, that finite time results are available 

for certain systems that offer infinite service potential 

and that are, at the same time, reasonable models for 

practical information about the upper limit that the system 

can achieve.  It is therefore of obvious practical value. 

^- 

Before proceeding further it is advantageous to introduce 

a fundamental notation of Queueing Theory.  The terminology 

X/Y/N  is used to denote a service system with N  servers. 

The units requiring service are supposed to arrive at time 

intervals whose distribution is denoted by X,  If the 

service facility is full, they wait.  When they reach a 

service point the time required to complete service has a 

distribution specified by Y.  The most commonly encountered 

type of X  and Y is the negative exponential distribution. 

This is always denoted by the letter M.  Another type of 

frequent occurrence relates to the deterministic case, 

and is always denoted by D.  Thus M/D/1  denotes a single 

server system in which arrivals are separated by time intervals 

having a negative exponential distribution, and each customer 

receives a fixed service time.  In this report we are dealing 

with systems that may be denoted by X/Y/o» . 



; 
/*    Explicit time-dependent solutions olf Erlang's Problem for 

M/Y/ce  and for a special  X/Y/«» in which X  is governed by 

a time dependent parameter, were given by Khintchine [Ref, 2], 

Subsequently Takacs [Ref. J ] gave a solution for  X/M/'o» 

where arrivals occur in a renewal process with arbitrary 

inter-arrival distribution.  The Takacs solution is  expressed 

as a Laplace transform.  Subsequently it was discovered 

[Mirasol (Ref .4) ] that the output of the M/Y/OB  system is 

Poisson.  This aroused conside"able interest since an infinite 

service system can be used to model delays in arrival at a 

service point [see Kendall (Ref. 5)? tor example]„  That is to 

say, one may imagine that when a customer arrives he is put 

through an imaginary infinite server system before going to 

the serving point, and this has the effect of delaying him» 

The output of the infinite server system then becomes the 

input of the real service facility, and since queues with 

Poisson input (essentially of M/Y type) are well understood, 

Mirasol's discovery held out some promise of throwing light 

on the notoriously difficult delay problem,.  More recently 

Vere Jones [Ref, 6] has shown that the output of an infinite 

sequence of  X/Y/00  systems, each feeding the other, is Poisson, 

With the exception of a hint in Kendall [Ref» 5]j no investigator 

seems to have exploited the fact that under suitable renditions 

the customers entering an infinite service facility may be 

thought of as flowing through it independently<  This fact 

can be used to simplify considerably the development of 

the theory.  It is the purpose of this report to demonstrate 

how this can be done, and to make an application to the 

waiting time problem for an interesting, incompletely 

investigated queueing system in which service xs geared to 

demand. 



1. THE METHOD 

We suppose that at time  t = 0 the infinite capacity service 

system opens its doors, permitting service to begin on the n 

customers who are waiting.  First we give formulae for: 

(a) The probability a (t) that m of the 

original n customers have been served 

by time t. This is clearly independent 

of subsequent arrivals who, because the 

service facility is infinite, will flow 

independently through the system. 

(b)  The probability density function b  (t) 
th nra 

that the m customer of the original n 

has been served in the small time interval 

(t, t + dt). 

Let the probability density function  (p.d.f.) of the service 

time s of a customer be denoted by b(t).  We make no 

special demands on b(t)  except that 

b(t) dt = 1 

and that its moments exist, 

(d.f.) by B(t), i.e. 

We denote the distribution function 

B(t) = b(s) ds, 



/ '; /'" 

and the tail of the distribution by B (t), so that 

B (t) 1 - B(t), 

The m customers to have been served by time  t  can be selected 

in f j ways and since the probability that any of the 

original  n has been served by time  t  is  B(t), we have 

immediately 

^t)   =  (°)  [Bet)]"" [Bc(t)] 
n-m 

[Eq. 4] 

th 
To deal with b  (t)  we note that the m   customer who run 
has been served in  (t, t+dt)  can be chosen in n ways» 

The p.d.f. of his service time is  b(t)<,  In addition we 

require that m-1  out of the remaining n-l  are served 

before t.  Thus 

b  (t) = n (n-J) [Bet)' nmv '     \m-l/ L    _ 

m-1 
B (t) cx ' 

n-m 
b(t) [Eq. 5] 

Writing D  for -rr , it is then clear that 

/ \ r     -,n-m   r    -,m 
b  (t) =  (n)  B (t)      D B(t) I , nmv /    \m/ L c11 'J     L    J [Eq. 6] 

Now we consider arrivals that occur subsequently to  t = 00 

Again, because the service has infinite capacity, these can be 

dealt with independently of the fate of the original  n 

customers in the system.  We concern ourselves with 

(a)  the probability  r  (t)  that during (0, t) 



n arrivals take place, of which m have been 

served before time t, (not necessarily in order 

of arrival); 

and 

(b)  the associated probability density function  q  (t) 

thatin(0,t)  n arrivals take place, of which 

the m   has been served in the small interval 

(t, t+dt) (not necessarily in the order of 

arrival). 

We denote the p.d.f. of the intervals between arrivals by 

a(t), which, as for b(t), we suppose to be a properly 

behaved function with moments.  We also write 

A(t) a(s) ds 

and 

Ac(t)  =  l-A(t). 

Given that t = 0 is an arrival instant (one might suppose 

that the latest of the customers waiting at t = 0 arrived 

at that moment) we clearly have 

r10(t) = a(s) Ac(t-s) Bc(t-s) ds. [Eq. 7] 

and 

u^- J 
fit 

a(s) A (t - s) B(t - s) ds. [Eq. 8] 

10 



Adding these we obtain, as might be expected, the probability 

of exactly one arrival in the interval  (0, t).  The 

explanation of Eqs. 7 and 8 is as follows.  We suppose that 

the one and only arrival occurs in the small time interval 

(s, s + ds).  The probability of this event is  a(s) A (t - s) ds. 

In the remaining part of the interval,  t - s, Eq. 7 requires 

that the arrival is not served, [probability B (t-s)], or 

in Eq. 8, is served, before epoch t [probability B(t-s)]. 

Adding over all possible  s  completes the explanation. 

Generalizing to  r  (l smsn-l) we have nm 

r  (t) = nm a(s) B(t-s) r  ,   , (t-s) ds + 7  v    '  n-1, m-1 v    ' 

a(s) B (t-s) r t        (t-s) ds. v '  cv    '  n-l,m v    ' [Eq. 9] 

The explanation is again based on a first arrival in the 

interval  (s, s+ ds).  Either this arrival is served before 

t  or he is not.  Invoking the independence of flow concept 

we see in the first case that during  (s, t),   n-1 arrivals 

must occur with m-1  services, and in the second,  n-1 

arrivals and m services.  For m = 0 and n we obtain 

single integrals: 

-„O**' " a(s) Bc(t-s) rn_1 0 (t - s) ds; [Eq. 10] 

nn (t) =  J  a(s) B(t-s) «Vi,^! (t-s) ds, [Eq. 11] 

11 



With the definitions 

and 

roo(t) 

r (t) run 

A (t) 

= 0 

for m > n, and either m or n negative, the validity of Eq. 9 

can be extended to all m and n, thus including Eqs. 7j 8, 

10 and 11. 

Turning to the corresponding densities  a  (t)  we use a 

similar argument.  This function has no meaning for m=0. 

For m=1 we obtain: 

qnl(t) = J  a(s) [b^-8) rn-l, 0(t-s) +Bc(t-s)qn-l, i^'8)] ds? 
o 

[Eq. 12] 

•>t      p 
q  (t) =    a(s)  b(t-s) r  .   . (t -s) + B (t - s) q  ,   (t - s) Hnmv '   J       L       n-1, m-1 v   -^   cv    ' n-1, mv    ' 

+B(t - s)q  ,   , (t -s) v    • Mn-1, m-1 ds; [Eq. 13] 

for 2 s m s: n-1 ; 

C 
ann (t) =    a(s) TbCt-s) r  ,    . (t-s)+B(t-s)q  ,   .(t-s)] ds. v '   J       L       n-1, n-1 v   '  v   /nn-l,n-l    'J 

o 

[Eq. 14] 

12 



The explanation of Eqs. 12, 13 and 14 is similar to that for 

Eqs. 9j 10 and 11,  The first arrival occurs in  (s, s + ds) 

and we then have to consider whether or not he is the 

customer to be served in  (t, t+dt).  In the case m=1 

he either completes in  (t, t+dt)  or  after tj  in the 

case m = n  he either completes in  (t, t + dt)  or before  t. 

For  2 fim^n-l  he may complete in (t, t + dt),  before  t 

or after t.  There are no other possibilities. 

Again a suitable definition permits the validity of Eq. 13 

to be extended to all m, n.  This is 

q  (t) a 0 

for m = 0 and m>n . 

It will be noted that subject to suitable conditions these 

formulae for the probabilities  r   and densities  q   are ^ nm nm 
valid for arbitrary arrival and service intervals of 

recurrent type. 

One can now turn to Erlang!s Problem: that of writing down 

the probability 

p(N)(t) =  Pr[|(t) = k| 5(0) = N 

where it will be recalled that  ?(t) (t S: 0)  is the non-negative, 

integer-valued stochastic process that describes the number of 

units in the system at time  t  after the process was initiated, 

and N  is the number of units present at  t = 0.  There are 

two ways of doing this and it will always be supposed that 

at  t = 0 all services begin simultaneously, and an arrival 

can be regarded as just having occurred. 

13 



First consider the case OsksN.  It is then possible to achieve 

the condition |(t) =k without any arrivals during (0, t). 

The contribution to p^j/(t)  is thus A (t)a   k^^"  when 

arrivals do occur it is still possible that the k  remaining 

belong to the original N.  The condition is that all n 

arrivals  (n al)  are served before t.  The contribution 

to P^Ct)  is thus a  N_k(t)r rnn(t). 
'      n^l 

Now consider that all but one of the arrivals in (0, t)  have 

been served before t.  Then k - 1  of the original customers 

must remain, and the contribution to P w (^  becomes 

r    .. (t).  Generalizing, if  s  customers^ out 
1  n, n-1 v ' - J aN, N-k+1 ^ '      ni 

of the new arrivals remain at  t, then k-s  originals must 

remain too.  In this case we have a contribution of 
a\r \T UJ. ("k) 2] r     (t) while  OfisSk,  This argument also 

JN • w ^iC'rS        n« n~s ' n=s 
depends on the  independent flow concept.  We have finally 

.(N) p-(t)=Ac(t, aN(N.k(t, ^0 V-W^^ -n.n-s^) 

[Eq. 15] 

r00(t) = Ac(t)  note that for  OsSksN.  With the definition 

the first term in Eq. 15 can be included in the sum.  Thus 

Eq. 15 becomes 

pW(t) - s 
k      s=0 

aN, N-k+s(t) E 
n2s 

r     (t) n, n-s v ' [Eq. 15a] 

When kiN+1, arrivals must take place. For simplicity 

consider k= N+l. If none of the original N has been 

served before t then exactly one subsequent arrival must be 

14 
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present at time  t.  The contribution to p^^ (t)  is then 

aN0(t)  ^  rn,n.s-lM-     Thus nss+l   ' 

(N)       " ■W*) " *    aNs(t)  S  r ^ (t) . [Eq. 16] 
s=0       n^s+l   ' 

It is not difficult to extend the argument to obtain the general 

formula 

s=0        n^ s+k   ' 

for k a 1. 

Noting from the accepted definition of binomial coefficients 

that 

CD- 

for m>n and negative n or m, we then have automatically 

a  (t) = 0 nnr ' 

for such values of m and n, and thus the validity of Eq. 15a 

can be extended to all k( a 0).  This provides the solution to 

Erlang's Problem in some generality.  The argument, though 

correct, is rather dull and the formulae on their own are not 

very exciting. 

15 



A more aesthetically attractive formulation, which emphasizes 

the independence of flow concept, leads to the following set 

of equations  for p^  (t)s 

n=0   ' 
(t)  f  a(s) p^^t-s) ds. 

for  0 i k <:N; 

[Eq. 18] 

n=0 
'N+k^ aN,n(t) 

a(s) Pk+n^"8^ ds = [Eq. 19] 

for 0< k< • . 

We consider first Eq. 18.  Here the number of units present at 

time t  is at most equal to N, the number originally present. 

There may have been no arrivals, in which case provision has to 

be made for the right number of departures from among the 

initial N.  This accounts for the first term on the ri^Ht 

hand side.  The second term deals with the case where 

arrivals have taken place.  We now argue that because the 

service facility has infinite capacity, the first arrival 

creates a situation in which a second infinite service facility 

is initiated with a single unit present.  We then have to 

provide that the sum of the number remaining at time t out 

of the initial batch of N, plus the number remaining in the 

second system initiated with a single unit at time s, has 

the correct value. 

When the number present at time  t exceeds the initial number N, 

arrivals have to occur.  The explanation of the single term on 

the right hand side of Eq. 19 is then identical with that of 

the second term on the right hand side of Eq. 18, 

16 



A number of steps can be taken to verify the correctness of 

these general formulations of the solution of Erlang's Problem 

for an infinite service facility.  One can, for instance, 

show that  2 P i_ — 1> as it should, for all N s> 1.  In 
ksO  K 

addition one can demonstrate the equivalence of Eq. 1.5 with 

Eqs. 17, 18 and 19 by direct substitution.  It would be 

tedious to continue in full generality and we shall therefore 

proceed in the framework of particular systems, 

k 
It seems worth pointing out that the theory permits one 

to handle units that require different grades of service. 

Suppose for example that the input consists of a variety of 

units,some having inter-arrival interval density function  a1(t), 

others  a3(t), and so on, and that service on the  al(t) stream 

has density function b1(t), b (t) on the  a2(t) stream, etc. 

Provided that  t = 0 marks an arrival and beginning of service 

epoch for each stream of units,  the different types can be 

allowed to flow independently through the infinite system. 

The number  '(t)  of units present at time  t  is then, with 

obvious notation, given by 

?(t) = ^(t) + 5a(t) + 

and Pr §(t) := n  is the convolution of the individual 

probabilities given by the theory.  Thus one can with the same 

theory describe, for example  a mixture of slow and fast ships 

crossing an area. 



A number of steps can be taken to verify the correctness of 

these general formulations of the solution of Erlang's Problem 

for an infinite service facility.  One can, for instance, 

show that  £ p.- 1, as it should, for all N ? 1.  In 
ksO  k 

addition one can demonstrate the equivalence of Eq. 15 with 

Eqs. 17, 18 and 19 by direct substitution.  It would be 

tedious to continue in full generality and we shall therefore 

proceed in the framework of particular systems. 

It seems worth pointing out that the theory permits one 

to handle units that require different grades of service. 

Suppose for example that the input consists of a variety of 

units,some having inter-arrival interval density function a^(t), 

others  a2(t), and so on, and that service on the  a,(t) stream 

has density function  b^t), b (t) on the  QgCt) stream, etc. 

Provided that  t = 0  marks an arrival and beginning of service 

epoch for each stream of units,  the different types can be 

allowed to flow independently through the infinite system. 

The number  §(t)  of units present at time  t  is then, with 

obvious notation, given by 

|(t) = ^(t) + |8(t) + ., 

and  Pr §(t) = n  is the convolution of the individual 

probabilities given by the theory.  Thus one can with the same 

theory describe, for example, a mixture of slow and fast ships 

crossing an area. 
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2.    THE SYSTEM M/Y/«» 

2.1  Erlang's Problem 

This is the system for which the solution of Erlang's Problem 

was first furnished by Khintchine [Ref. 2], whose results are 

givenhere. The arrival pattern is governed by a negative 

exponential distribution with parameter  X.  That is to say 

a(t) = Xe"Xt, [Eq. 20] 

and 

Sss 
Mt)  = 1 -e"Xt, 

A (t) = e"Xt. 

[Eq. 21] 

Y denotes a general service time distribution whose p.dof. and 

distribution function will continue to be denoted by b(t), B(t). 

The simplest approach to the probabilities  P n (*) 
is furnished 

in this case by the functions r
nm(t)   [c'f' Eqs" 9, 10 and ll]. 

Clearly, 

r10(t) = X 
rXs e-X(t-s) B (t_s) ds 

c 

= X e -Xt B (t-s) ds cv 

= X e-Xt g(t) , [Eq. 22] 
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where 

g(t) = B (s) ds [Eq. 23] 

Similarly, 

rll = ^ 

t 
j-Xs e-X(t-s) B(t_s) ds 

= x e-xt r(t), [Eq. 24] 

where 

f(t) =     B(s) ds, [Eq. 25] 

It will be noticed that  f(t)+ g(t) = t, [Eq. 25a] 

Then it is easy to show inductively that 

r  (t) nnr 
Xne-Xt  fm(t) ^-m(t), 

mi (n-m)1 
[Eq. 26] 

and that 

n  -Xt „n-m 
q  (t) = ^—^~ 
nm       m! (n-m)! 

g11""1!!! D[fm(t)] [Eq. 27] 

where D = -rr . Then from Eqs. 15 and 17 we obtain 

((N)(t)==e-Xg(t) T (N_k+m 

[xg(t) 
-,m 

L^JBK-k+m(t)*k
c-

m   — 
m~max(0,k-N) 

[Eq. 28] 
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for all  k a 0, a weighted combination of compound Poisson terms 

with time-dependent parameter  Xg(t).  If we put N = l  we have, 

omitting arguments, 

„(1) P o e-Xg B , [Eq. 29a] 

p(;) = e-Xg[Bc + BiA£i], [Eq. 29b] 

P^.e-^iifi+Biifil], [Eq. 29c] 

n c /  , % .       „ t (n-1) n; 
[Eq. 29d] 

Clearly T      p( ^ = 1 
nsC   n 

The special forms of Eqs. 18 and 19 for N = l  are, since 

a(t)=Xe-Xt: 

(i> -e-^ B+VBe"^ P o ^  eXs p^^s) ds; [Eq. 30a] 

/!> =0-^6 +XB  e"^ r1 e^ o^J \B     e c  ^ c e^s  p^;{s)ds + 

+ XB e -xt 
5
XS p^^s) ds; [Eq. 30b] 

'ill - ^ *-xt 
S
XS p(i)(s)ds + XB e-Xt eXS pli\(s)   ds, 

[Eq. 30c] 
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Substituting Eqs. 29« in the integral in Eq. 30a gives 

J* exS-uU) B(s) ds = J* e\Hs) df(8) =i pfW.,] 

|     whence it is clear that Eq. 30a is satisfied by Eq. 29«. 
Xt . 

Similarly, in the general case.  The coefficient of X.B e   in 

Eq. .30c is 

r exf(s) 
[Xg(s)]k        [Xg(s)]k+1 

B
c(s)  kl  + B^   (k-H)l ds 

X .. 

[Xg(s)] k+1 

Xf(s) ________ 
e        (k+ 1)1 

1 
X 

Xf(s) 
Xg(s)J    \ 

(k+ry 
o-' 

\g(t)] k+1 

X e      (k+l)i 

Thus the right hand side of Eq. 30c becomes 

k+1 
B  e-Xg  Ug)   + B e"

Xg  US)\  , Bc e     k!    + K e     (k+1)J ' 

.. , •    (1) whxcn is Pk+i • 
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I 

2.2  The Output 

Description of the output process from an infinite service 

facility can be quite general, as we shall now briefly 

indicate.  Let  T|(t)  be the number output from an 

infinite service facility in the interval  (0, t) and let 

v^'Ct) = Pr [nCt) = k I 5(0) = n] , [Eq. 31] 

»- on the assumption that  t = 0  corresponds both to the beginning 

of an arrival interval and to the beginning of service of all 

units.  Then for k = 0 we have either 

v^Ct) A (t) a „(t)+a n(t) cv '  nO     nO  ' a(s) v^^t-s) ds ,     [Eq. 32] 

or 

& 
,(n), 
v „(t) = A^(t) a„n(t) + a„n(t) T      rmn(t) 

mal 
[Eq. 33] 

For the M/Y/»  system with  a(t) = \e   X , Eq. 33 gives 

.^(t) =Bn(t)  e-^f(t) . [Eq. 34] 
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Then 

J a(t-s)   v^fs)  ds = Xe"Xt ^ eXs       B  (s)   e-Xf<s) ds 

= Xe-Xt 
nt ag(s) dg(s) 

= e-xt(exg(t)^1)5 

and it is clear that Eq. 32 is satisfied.  The argument leading 

to Eqs. 32 and 33 is that none of the original  n must have 

been served in  (0, t), nor must any of the subsequent arrivals. 

In the case of formulation by Eq. 32 it is argued that the 

first arrival initiates the activity of a second infinite 

service facility.  The reader will readily verify that a general 

formulation on the lines of Eq. 32 gives: 

v(^(t) =Ari(t) a^(t) + T    ani(t) j  a(t-s) v*1] (s)dsJ nkx 

i=0 k-i 

for k s n; and 

[Eq. 35a] 

v(^(t) = T      ani(t) J  a(t-s) vlH     (s)   ds 
X —U -. 

[Eq. 35b] 

for k > n. 

In the spirit of Eq. 33 we have 

v^(t) 
1=0      mämax(l,k-i) 

[Eq. 36a] 
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for k s n; and 

v^U) =  T a .(t)  Er., k       , .. niv '   , .  m, k-i i=0       msk-i   ' 
[Eti. 36b] 

for k >n. 

For the system M/Y/e»  these reduce to 

v^(t) = e 
f/-. x min(k,n) Xf(t) 

•lf(t)  J0       
a„i^ SrrTi 

k-i 

[Eq, 37] 

for all k s 0.  Thus, as for the state probabilities, the number 

output from the system in  (0, t) has for distribution a weighted 

sum of compound Poisson terms, but with time dependent parameter 

Xf(t).  This is essentially the finding of Mirasol [Ref. 4]. 
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3.    THE SYSTEM X/M/C 

3 • 1   Erlang's Problem 

Although the integral equation formulation for the output and 

state process seems more elegant it is not clear that it is as 

suggestive of the solutions as the alternative expressed in terms 

of the functions  r  (t), at least so far as the system M/Y/OB 

is  concerned.  The reverse is the case for the system X/M/OB 

and, by contrast with M/Y/oo, it seems expedient to resort to 

the Laplace transformation.  The density function  a(t) is now 

general, whereas  b(t)  has the specific form |je -{at 

|i 

The solution of Erlang's Problem has been published, with misprints, 

by Takacs [Ref. 3].  It requires much algebra, which it would 

be tedious to reproduce.  We content ourselves with a statement 

of the result for  §(0) = 1  together with an indication of a method 

for its derivation. 

( n^ 
We drop the superscript on p t. (t), i^ now being understood 

that it is unity.  We also write 

TTk(z)   = e~Z Pk(t) dt 

for the Laplace transform of  Pi.(t), and further introduce the notation 

V. 

I 

«Jz) = 
p as 

r(z + kU)t  a(t) dtj  «j 

6k(z) = 1 - o^U) 

fk(z) 
r(z+kU)t A (t) dt. 

[Eq. 38] 

25 



I 
and henceforward drop explicit reference to the argument z. 

Then, for k s 0, 

v (k+xS\   f   \i p-;fta---ak-i+i fk+i r_   _-, 
k  i=0 V k /        öoV--6k+i 

in which when k = 0, the numerator is  f0 for  i = 0  and fj 

for  i = 1.  The generating function 

n(x) = E    TVX 
k20  

k 

can be written 

(1-x)     Ct ^...{L.!-   fk+i 

n(x) =   T (-)1 rr—:~^ . [Eq. 40] 
isO 0o*i""ek+i 

Putting x =1  gives 

nu)=^-i. 

which implies that  £ p,(t) = l, as it should. 
ks0 

K 

The proof of Eq, 39 is carried out most expeditiously by 

introducing a shift operator E that is such that it increases 

the argument z of the various Laplace transforms by an 

amount \x.  Thus 

^ = Ek a0 , [Eq. 41] 
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for example.  Later it will be convenient also to use a backward 

difference operator v wnich is defined by 

V = 1 -E . [Eq. 42] 

We notice also that the interpretation of expressions like 

(l-ftoE)"1 is 

i + a0 E + C. E(a0E)+ a0 E(a0E) (a0E) + 

:i + a0 E + a0 ^ E
s + a0 04 02 E + [Eq. 43] 

Finally we observe the easily verified identity 

Xo (1-^E)  yo = (l-x0E)  
Xoyo- [Eq. 44] 

Care has to be ekercised in maintaining the proper order of the 

operators, proceeding systematically from right to left. 

Now from Eq. 18 with N= 1 and k= 1  we have 

.-Uti ■uth 
Po(t) = (l-e^1-) Acit)+il~e-^) a(s) p0(t-s) ds , 

which leads upon Laplace transformation to 

rffi+a«rrJ no =   v [fo+aoTToj [Eq.  45] 
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We write 

Fk ~ ao "k 

Go = fo + Fo- 

Then from Eq.   45 

Go = fo + a0   VG0 

or 

(l-tto?)   G0  = f, 

Replacing   ^   by     1 - E     gives 

(ee + a0E)G0 = f0, 

or 

/       ^o    \'       f o 
(1+T:EK=T:. 

[Eq.   46] 

i .e. 

/ ct'0    N"
1
  

fe 
GO = (1+T:E)   IT • [Eq.   47] 

Next we turn to the fcrmula for pjCt).  This is 

p^t) =e-"tAc(t)+(1-6-^)1 'a(t-s)p1(s)+e-
ütJ a(t-s)p0(s) ds 
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Pi which gives 

I»-. 

or 

TTj   = E G0 +   7 Fj 

F1   =  a0  EG0+  ft0    7Fl  , 

and hence 

[Eq.   48] 

'.=    (-£*) ( [Eq.   49] 

1" From Eq.   47 

: 

r 
EG0 = 

so that 

ft, v-1      f. (-^E) i' 

an    \-l a,     \-i  f i -i 
F>=(1+T;E)   [T;(1+T:E)   -sr 

= (1 + »;Er (1+T;E) 
^O      N-1    ^0 fl 

»O^l 

after using an identity of the form of Eq. 44-  Thus symbolically 

F, =  1 + — E 
ao  \~2 /ao fi (1+^E)'(f^) 

\   e- /  ve.o, / 
[Eq. 50] 

For ka2, 

^.-ut -ut, pk(t)=e-
w" | a(t-s) pk_1(s)ds + (l-e-^") J a(t-s) pk(s) ds , 

o 
[Eq. 51] 
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which leads to 

-1  r-tt. 
Fk = (1+T:E)   hr^ (Fk-i)]- [Eq. 52] 

We are naturally led to conjecture that 

^(-£■0 
an    N-(k+l) fto0Ll...Ok_1  fk 

[Eq.   53] 

Then 

EFk-i = (1+T-E)' 

o1tt2...gk^  tk 

61 62.. .6k 

So that the right hand side of Eq. 42 becomes 

o-o     -1 

('^E) (-^) 

o  ^N"k        aotti'*•ak_l   fki 
b0bl...tk 

after using an identity of the type of Eq. 44, which can easily be 

verified.  This confirms Eq. 53 for  kal and leads directly to 

Eq. 39 for k s 1 upon expansion and correct interpretation of 

the binomial operator.  From Eq. 47 

Wo = ro  = -fo + (1+T-E)  IT 

10  ft0 ^ 
-f + — -   

0    60    «o^l 
+ 

whence 

ftoai fa 

"o ^T »0*1 

6i fa 

6061 6a 
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which confirms the special form of Eq. 39 for k = 0.  This 

result can be cross-checked for the system M/M/OD by putting 

b(t) = uie ^  in Eq. 29a, taking the Laplace transform,and 

then reproducing the above result for the particular case 

a(t) = Xe-Xt. 

3.2  The Output 

The output from X/M/»  can be dealt with in similar fashion. 

Let  ri(t)  be the number of units processed by the system in  (0,t) 

and recall the definition Eq. 31 with  n^ 1, that 

vk(t) = Pr [n(t)= k | §(0) = l] . 

We use  ^i,(z)  for ^e  Laplace transform of  vk(^) an^ 

subsequently omit the argument.  In addition we write 

Hk ^ fto \ ' [Eq. 54] 

We  shall show that 

H, =  (l-fto E)"1     [ftofi]. [Eq.    55] 

and that  for    k a 1 

H 
k    r. 

k Ll - 0Lo E        M'0 a0 v Li-a0E    ^oj [Eq.    56] 

This can be more explicitly, but heavily, expressed in various 

ways.  It seems best to leave the formula in symbolic form, though 
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we shall apply the check of showing that it leads to 

Z       v (t) = 1. 

From Eq. 3 5a we have, when  n= 1  and  k = 0. 

v0(t) = e"^ [Ac(t) a(t-s) v0(s) ds 

which gives 

*o = E(fo + »o V' or 

Ho = do E(f0 +H0). 

Hence 

(i-a0E)H0 = a0 Ef0= aof! 

This is Eq. 55.  For k=l we have 

(t) =(l-e"ut)A   (t)+(l-e~^t)  I    a(t-s)v0(s)ds+e~yt I   a(t-s)v1(s) ds 

or 

«!    =   »0   V    [fO+Ho]   +   »0   E(Hl) 

Now 

fo+Ho 1 + TTO;   '   »oE f„ = o      i- anE  '  fo 
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Hence 

H,    = T T-F   '   OLft ^ i     I-OUE     ^o v  Li-a0E ^ Li -aftE 
foJ » 

which  is Eq.   58 with    k =1.     In general 

Mt" vk(t) = (l-e^t)  I    a(t-s)vk_1(s)ds+e"^t [     a(t-s)vk(s)   ds, 

or 

i 

1 
f 

(i -a0E) Hk = a0 v H^J    , 

which plainly leads to Eq. 56 

As a check we have: 

k5o 0    i - do11 i _ 
i - a0E     -o ftn   ^ 

i - a0 E    o 

- Ho +   1 -ftoE   ao v 

since     V + E    =    1. 
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Hence 

kuO    K i-a0E 

f       f 

1       «0 &! i-a0E ' ao «0   "    ^    «! 

f 

1    • Fi- »oE 
ft0f o1-o 

since     fn  =   60/z. 

Recalling Eq.   54  this means  that 

T   v (t) = i , 
ksO     k 

as   it  should. 

The author believes that the results in this chapter have not 

been published before. 
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4.   THE THEORY OF A CONSTANT ATTRITION ANTISUBMARINE BARRIER 

Description in Terms of a Single Server Queueing System 
in which the Rate of Service depends on the Number in the 
Queue. 

4.1  Introductory 

An antisubmarine model to which the theory given here is 

applicable concerns the situation in which all enemy submarines 

proceeding from base to operational area are constrained by 

geographical or other considerations to transit a region in 

which an antisubmarine barrier is placed.  It is supposed 

that the barrier can exercise constant destructive power per 

transit.  This means that if the enemy force contains  n 

submarines at time  t, the probability of a submarine loss 

in the small time interval (t, t+dt) is  (jindt.  This factor 

coupled with the constant probability differential \     of 

new construction accounts for the fluctuations in  n.  The 

same model can be used to describe air defence situations 

(raiders attacked by missile defence). 

A novel application of this model in the non-military field 

of congestion theory will be defined in the next section and 

the analysis will be prosecuted in terms of this model.  The 

terminology is not, in fact, of great importance, for it is the 

formal similarity of the general model to that of an infinite 

service system that permits one to borrow from that theory, 

thereby achieving a simplicity in development that would 

be difficult to obtain by direct methods-  In Sect. 4-3 we will 

return to a discussion of the antisubmarine model. 

Research in the theory of congestion is at present embodied in 

several books and perhaps about 1500 research papers, the 
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majority of which have been published since 1950.  With relatively 

few exceptions these studies have been made of systems in which 

the service and arrival processes are independent„  Such systems 

suffer from the operational defect that when the traffic 

intensity, measured by the ratio of mean arrival rate to mean 

service rate, approaches unity the queue tends to elongate 

and waiting tines of the clients become excessive.  On the 

other hand, at low traffic intensities the service facility- 

tends to suffer long periods of idleness.  The obvious remedy 

for this unsatisfactory state of affairs, which seems to be 

implemented in practice, is to arrange, as far as possible, 

for service to be matched to demand.  (An alternatxve might be 

to match demand to service.)  Yet, curiously enough, an almost 

negligible amount of effort has been expended on assessing the 

effect of this by analyzing appropriate models.  This is all 

the more curious at the present time, in that the effective 

operation of computer time-sharing systems may be said to 

depend on the implementation of systems of this nature, 

4-2   Fundamental Model 

A series of papers by the author and Hadidi [Refs. 7 to 10] 

have expounded the theoretical and numerical analysis of a 

system in which the allocation of service time to a giv^n 

customer is determined by the interval of time between the 

epochs of arrival of that customer and his predecessor; 

substantial practical system improvements are demonstrated. 

The same authors have in addition conducted research on 

another system in which the instantaneous rate of service 

depends on the number in the queue [Refs. 11 and 12J. 

As we shall now explain, the analysis of this latter model is 

facilitated by analogy with an infinite capacity ser\ice facility. 

The system under consideration can be explained as follows. 

A simple  M/M/1  system has a single server and is characterized 

by independent negative exponential distributions of arrival and 

service with mean rates \     and  y,  respectively.  We suppose 
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now that the service parameter is  c 

in the queue and in particular that 
n when there are n 

an =  (n+ 1) u . 

I 

This model then supposes that the length of time required 

to serve a given customer depends probabilistically on the 

number of arrivals during his service time.  A large number 

waiting is characterized by rapid service. In  what follows 

we shall further suppose that arrivals form a Poisson 

stream with parameter \     and that there is just one server. 

Let  ^(t)  be the number present in the system (i.e. in the 

queue and in service) at time t,   and write 

pn(t) = Pr [?(t) = n] [Eq. 57] 

By a familiar argument, which links  ^(t+dt) with  5(t) 

via the events that can happen in the small time interval 

(t, t + dt), we find that p (t)  is described by the set of 

equations 

P0(t) + XP0(t) = lip^t) 

p^t) + (x + u) p^t) = Xp0(t)+ 2Up2(t) 

Pn(t) + (X + nU) pn(t) = XPn_1(t)+(n+l) UPn+1(t) 

[Eq, 58] 

/ 

where dots denote differentiation with respect to time.  It 

will be recognized that these equations are identical with the 
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set that describes p (t)  for the infinite service system 

M/M/«,  Thus p-.Ct)  has the same value for both systems. 

There is no question of multiplicative constants,since 

in both cases T.    p (t) = 1.  The results given in Sect. 2.1 n 
for Erlang's problem wxth b(t) = jje ^ 

applicable. 

are therefore 

We shall now show how to deal with the problem of the 

waiting time of a customer who arrives when the system has 

been in operation long enough to have "settled down" to a 

state of statistical equilibrium.  This means that the number 

in the system is described by probabilities  p , which are nJ 

equal to  lim  p (t)  and have the value 
t "♦ OB 

Pn = 
.-P iL 

n 

ni 
[Eq. 59] 

If we define waiting time to include the customer's own service 

time and specify a first-corae, first-served, queue discipline, 

then it follows that a customer who arrives to find n already 

in the system has to wait during the residual service time 

of the customer being served, plus the service times ot 

the  n-1  in front of him, plus his own service time.  The 

fact that the service time distribution is composed of 

negative exponentially distributed corr.ponents means that 

residual service time has the same distribution as complete 

service time.  Thus the new customer has to wait for a time 

that has the distribution of the sum of  n+1  complete service 

times. 

This leads us to enquire into the form of the joint probability 

and density  v  (t)  that, starting with n, it takes time  t 

to output m  successive customer.  The waiting time of the 

customer who arrives to find n  in the system is then governed 

hy  Y +i  J-I^), anc* t*16 steady-state density function h(w) 
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of the waiting time w of a new arrival, however many he 

finds, is 

h(w) = e -o I 
n^O 

n 

ni VK, n+l(w) ' [Eq. 60] 

We now proceed to find  y  (t)  by invoking the fact that the 

a = (n+l)u  system is formally identical with  M/M/OB,  In 

this infinite system y     (t)  is to be interpreted as 

referring to the time  t  required to output  m  customers, 

no matter in which order, when there are initially n present. 

If it is assumed that  at t = 0, service begins on all 

n customers (the shop opens), the problem can be solved 

for the system M/Y/«O  in a fashion similar to that employed 

in Sect. 2.2.  This we shall do.  We recall that  n(t) 

is the number output from M/Y/O»  in  (0, t) and that, 

by Eq. 31, 

» (t) = Pr [^(t) = k 1 5(0) = n [Eq. 61] 

Let T   be the time to the completion of service of the in 
nm 

th 

customer, given that  ?(0) = n.  Then evidently. 

Pr  [Tnm>t] = Pr  [n(t) <m | ?(0)   - n 

m- 1 

= £       v^U). 
k=0 K 

[Eq.   62] 

Equation  62  determines     y m(^j   since nm 

n to 

Pr  FT      >tl = Y       (s)   ds. L  nm       J       Jj.     Tnm 
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From Eqs. 37 and 4 we have, for kin, 

k-i 

v(n)(t) = e-Xf(t) z /nN Bi(t) Bn-i(t) L 
K i=0 Xl/ C 

Xf(t) 

(k-i)I 

■Xf(t) c^{e^^[Bcit)+.Bit)]n 
[Eq. 63] 

(x)i   \ k 
where  C , (   > means the coefficient of  x in 

Thus 

v^(t) 
•xf(t) 

2TTi 

'  eXzf(t) 

r 

n 
Bc(t) +zB(t) 

dz 
k+1  ' 

where T    is a contour in the  z plane enclosing  z:=0.  Then 

Pr T  >t L nm 

-xf(t) 

2TTi     ^ 

' eXzf(t) 

r 

-,n 
Bc(t)+zB(t)J  d 

(1-z) m [Eq. 64] 

provided  that     T     excludes     z=l.     Hence 

Hc(t)= 
t 

n-1 

h(s)ds =  e-P    r      j—TfT    Pr 
nal 

T      >t nn 

£21^     rexpAzf(t) + pB   (t)+2B(t) 
2TTi J X 

Bc(t)+zB(t) dz 

z(l - z) 

[Eq,   6.5] 

40 



Equation 65 gives the tail of the waiting time distribution for 

the single server  "a = (n+l)u"  queueing system when b(+) 

is replaced by  ue-^ .  The result is delivered much more 

expeditiously by utilizing the infinite service system 

analogy than by any direct approach that we have seen. 

[See Hadidi (Ref. 12) where Eq. 6? is obtained by complicated 

analytical methods.] 

H (t)  can be expressed explicitly in terms of modified Bessel 

functions of the first kind by expressing Eq. ö5 in terms of the 

well-known contour integral representations  of the latter.  Thus 

one obtains 

H (t) =e-§"11 
Kn+1) 

Bc(t) I0(2 yf^l+ T     (*)2   '  In+1(2^Tl) 
naO 

,  [Eq. 66] 

where 

I = Xf(t) 

n = pBc(t). 

Similarly, the density function is given by 

h(t)-e-?"11 <[xB(t)Bc(t) +b(t)(l + pB(t))] I0(2 v^) + 

+ [pb(t)Bc(t.)(i)
2 + XB2(t)(|)2] 1,(2 ^)\ , [Eq. 67] 

; 

which may be evaluated either directly from the contour integral 

obtained from Eq. 65 by differentiation, or by differentiating 

Eq. 66 and utilizing known Bessel function relations. 
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Equation 65 can be checked by setting  t^O.  H (0) should have 

the value unity.  Now  f(0)=0,  B (0) = 1,  B(0)=0.  Hence 

Hc(0)  = 
rp 

2Tri 
.p/'2 dz 

2(1-2) 

2TTi 
i| dl 

I    ' 

by an obvious transformationo 

This is clearly unity.  Equation 66  may also be checked directly 

in the sai.e way. 

An explicit treatment of some analytical and practical aspects 

of the  a =(n+l)u  single-server system can be found in Hadidi n 
and Conolly [Ref. 11] 

4,3  ASW Application 

The interpretation of this result will now be made in the 

context of the antisubmarine model referred to in Sect. 4»1, 

in which all enemy submarines proceeding to and from their 

operational area are obliged to transit an antisubmarine 

barrier that has constant destructive power per transit. 

The commander who asks how long it will take to destroy as 

many submarines as the enemy now possesses can be answered by 

using the fact that the distribution of the time is  1 -H (t), 

This is the interpretation of the single-server waiting time 

result.  Note that unless \     is reduced to zero the enemy 

is still likely to possess submarines even when a number 

equal to his present strength has been destroyed. 
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A cognate question is;  "How long before I first reduce the 

enemy's present strength to zero?".  This is of interest to 

both offence and defence.  More generally it can be framed 

in terms of a reduction from the present level to some other 

prescribed non-zero level.  Such questions are answered in the 

terminology of stochastic processes by consideration of the 

distributions of "first passage times".  In congestion theory 

the interval of time from the epoch at which one client first 

occupies the system until for the first, time thereafter it 

becomes empty is described as a "busy period':, and one says 

that in this time the system has made a first passage from 

unity to zero.  Let  k(t)  be the density function of a busy 

period for a system in which arrivals and services have 

negative exponential characteristics.  Then the time required 

for a first passage from N  to  n (N>n)  has density 

function  k  ~  (t), the bracket superscript denoting 

convolution.  A congestion model with negative exponential 

arrivals corresponds to an antisubmarine barrier model with 

time-independent building rate. 

The writer has analyzed the problem of the busy period for 

the  M/Y/OB  congestion system, and by analogy this is applicable 

with negative exponential service time to the barrier model in 

the sense mentioned above.  The result may be expressed as 

follows. 

Let 

Let 

b(t) =  ue"^, 

pt 
B(t) =      b(s) ds, 

o 

pt 
f(t) =     B(s) ds. 

h(x, t) = e  v   - 1 ) 
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where is some real number, and let hv  (x, t) be the n-fold 

convolution of  h(x, t) with itself (with respect to t). 

Moreover, let 

h(n)(x, t) = T 
man 

xmh  (t) A nnm 

Then if  D n 
■ n 

dt n 

k(t) = -^ I  (-)n Dn+2 K       n^O 
h(ri+l) (i, t) 

This result appears to be new.  Its proof is given in Appendix A. 

In terms of the model of units in a geographical area the 

functions y     (t)  give information on the time required to 

output m units,given that n are present at a certain 

moment.  If the units are merchant ships carrying strategic 

material such information seems logistically pertinent. 
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APPENDIX A 

sf»; 

THE BUSY PERIOD FOR THE INFINITE CAPACITY 

SERVICE SYSTEM M/G/« 

In the terminology of Queuing Theory a busy period (B,P.) begins 

when the service facility ceases to be idle, and it continues 

until, for the first time thereafter, it becomes idle again. 

An infinite capacity system is supposed to be supplied with an 

infinite number of servers.  Immediately before a B,P, they 

are all idle.  At the beginning of the B,P. an arrival occurs 

and immediately begins to be served.  The Be P. continues until 

once again all servers are idle.  It is hardly necessary to 

add that since the number of servers is supposed infinite not 

all servers will be continuously occupied during a B.P, 

as here defined.  Let  n(T)  be the number of customers 

served during a B.P« that begins at time  t = 0  and terminates 

at  t^T.  We are primarily concerned in this paper with 

the joint probability 

k (t)dt - Pr 
n 

t <T < t+dt, n(T) = n [Eq. A.l] 

The M/G/ee  system is characterized by an arrival pattern that 

forms a Poisson stream with time-independent parameter  X" 

Thus interarrival intervals have p.d.f. Xe   .  A service 

period initiated by any one of the infinite number of servers 

is supposed to have a proper p.d.f. b(t) and a distribution 

function denoted by  B(t), such that  B(oe)--l.  The duration 

of a service is independent of the arrival stream. 

We also introduce the function 

f(t) = B(s) ds. [Eq. A.2] 
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and a generating function h(x, t) defined by 

hCx, t) =  exp[xxf(t)j - 1, [Eq, A,3] 

where  x  can be taken to be a real variable restricted as 

necessary to ensure convergence.  The commonly accepted 

notation  p(t)"q(t)  will be used for the convolution of 

two functions, viz. 

pt 
p(t)*q(t) =   j   p(s) q(t-s) ds, 

and p   (t)  will denote the n-fold convolution of  p(t) 

with itself, viz. 

P   (t) == p    (t)' p(t), 

with the convention that  p^  (t) Hp(t).  Then convolution of 

h(x, t) with itself and with respect to t produces a higher 

order generating function hr^x, t) , which, when expanded 

in ascending powers of  x  has coefficients that will be 

denoted by  h  (t).  Thus 

h(n)(x, t) - I hnm(t) x"1, [Eq. A.4a] 
msn 

and vie  observe then from Eq, A. 3 that 

r    -im / 
hlm(t)-  [Xf(t)j /ml    * [Eq. A.4b] 
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In the following development it will sii..plify writing to replace 

expressions like  d p(t)/dt  by D p(t).  In general when 

there is no ambiguity we shall omit arguments. 

The objective of the paper is to prove the result 

[Eq. A.5] 

The proof will proceed on the following lines.  Suppose that 

customers leaving the infinite service system are labelled 

in the order of their departure (1, 2, 3, ■> • °   n, .,.).  This 

sequence is a permutation of their order of arrival.  We 

suppose that at  t = 0  a B„P. begins and consider the event  E 

that the customer labelled  n  has been served in  (t, t+dt) 

leaving the system empty»  There are two mutually exclusive 

ways in which  E   can occurs  either it is the termination •7 n 
of the busy period beginning at  t = 0; or there may intervene 

one or more idle periods before  t.  We evaluate the 

unconditional probability of occurrence of  E , and the f J n 

probability of  E   given the intervention of one or more 

idle periodsj  k (t)dt  is then the difference between these 

quantities. 

We first require two lemmata. 

Lemma 1.   It is supposed that the system is empty at  t = 0. 

Let  r (t)  be the probability that exactly  n  arrivals take 

place during  (0, t)  and that all of them, and no more, have 

been served before  t.  Then 

r (t) =  e'Xt h. . [Eq. A,6] n In u i    J 

Proof.   Consider first  r (t).  Let the first and only arrival 

occur at epoch u.  He has to have been served before the 
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termination of the remainder of the interval, which has 

length t - u.  Then 

rjt) rt e-xu e-x(t-u) B(t_u) du 

=  e"Xt f(t) = e"Xt h 
1,1 

(t) [Eq. A. 7] 

Now suppose that Eq„ A.6 holds for all  n, and consider 
r +1(t).  If again the first arrival occurs at epoch  u, 

then during  t - u 

(a) this customer must have been served, 

(b) independently,  n  further customers have 

arrived and been served» 

The fact that we have an infinite system enables us to make 

independent arrangements for the first arrival and to separate 

his channel from the system as long as it is occupied.  Thus 

at epoch u  the initial conditions of the lemma are reoroduced 

and we have 

VK^ =-   >- e">lU B(t - u)   r   (t - u)   du x '     nv 

n+1 

n; 
rXu   B(t-u)   e-X(t-u)   fn(t-u) du 
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by Eqs.   A.6  and     A.4b 

i2ü e-xt  •" 
nJ        e fn D(f)   du 

e-xt  Uü n+1 

(n+1)• 

e   ^     h l,n+l ' 

This completes the proof of Eq. A.Ö. 

Lemma 2.   Let  t = 0  be the beginning of a B.P.  Let  T  be 
th n 

the epoch at which the  n   service was completed, i.ot 

necessarily in order of arrival and not necessarily without 

the intervention of one or more idle periods in the service 

facility, and with an empty system immediately after  T . 

Let 

v  (t)   dt =    Pr(t<T    <t+dt) nv   ' v n ' 

Then 

vn(t) 
.-xt 

Ds   (h,      ) v   1 ,n' [Eq.   A.8] 

(Note that, v (t)  is the p.d.f. of the event E  referred nN ^ n 
to earlier. 

Proof.   This is again inductive.  To deal with  vl(t) we 

require no arrivals in  (0, t) and the completion of service 
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of the original customer in  (t, t+dt).  Thus 

V^t) =  rrXt b(t) 

e-xt Da(f) 

.-xt 

T- DS (hi;.'- [Eq. A.9] 

Now consider  v ...  If it is the original customer who has n+1 0 

been served in  (t, t+dt)  we have a contribution of amount 

-xt b(t) r (t) = D(B) e~^ h, v '  n In 

^o  v +i ' ^^ ^(^* ^'^ an^ ^^e sePar'ation of channels concept 

used in the proof of Lemma 1=  If the original customer has 

been served before  t [probability B(t)]  we bring in a first 

arrival at epoch  t = u, which, since the original arrive 1 

passes independently through the system, reproduces the 

condition at  t^O,  Thus 

vn+l(t) = e'Xt D(B) hln+XB 

By Eq. A.8 this gives 

?t     -X(t-u) vn(u) du.   [Eq, A.10] 

n+ ̂ t) = e-Xt   [hln D(B) + B D(hln) 

.-xt = e'Kl   D{ht     B) In 
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V-     e~Xt D(fn  B) 

= T^iyr e"xt ^n«) 

.-xt 
-—    D8   (h,      .J 

This proves Eq.   A.8. 

To prove the main result [Eq. A.5] we again suppose the 

conditions of Lemma 2 and, recalling earlier statements, observe 

that 

Prlt<Tn<t + dt = Prft < Tn < t+ dt,  no idle periods! 
before 

-'- Pr t < T < t + dt,  at least one idle ; 
period before  t 

[Eq. A.11] 

i.e. that 

vn(t) = kn(t) + ^n(t), [Eq. A.12] 

where l  it)     refers to the second term on the right-hand side 
n 

of Eq, A.11.  Knowing v , if we can determine I   , then we 

shall have obtained k .  Suppose the first idle period occurs 

after the termination of the m  service  (l smsn-l)  at 

epoch t-u.  Then  (0, t-u) is a B.P. with m services. 

We then have to arrange for a further arrival at epoch 

t-u + u)(0 < U" < u) , which reproduces the initial conditions. 
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During u-U),  n-m services are required, with or without idle 

periods, the last terminating at epoch  t.  Hence 

n-1  pt 
I   it)  =  X T 
n       m=l  ^ 

k (t -u)du 
r>u 

e    v   (u - m) dm n-mv    ' w 

n-1 .-xt = Z k ft)-  e~KlJ  D 
m=l 

h,   (t) ln-mv ' 

using Eq. A. 8.  Now using  Eq, A. 5 for  1 «Smsn-l, we have 

e-Xt 

[>s(hi,rthin-i) + 

+
 D3(hl,2-;;-hln-2)-D4(h2,2-

!:-hln-2) 
+ 

+ D3(hl,3 ^in-s) -D*(h2,3 *hln-3) +D5 (h3,3 *hln-3) 

+ D^fh,  , - h, i
>)-D*fh0  .»h. .l+D^h.  . ^ h. ,)- 

\ ln-1   1,1/    \ 2n-l   1,1/     \ 3n-l   1,1/ 

.n -n+l +(-) ""'("„-!.„- l9hl,t> 

.-lit 
|y(h2n) -D*(h3n)+D5(h4n) -....(-)" Dn+' (hnn) 

[Eq. A.13] 
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? 

This, with Eq. A.12 establishes Eq, A.5, it remaining only 

to show from first principles that 

.-xt 
ki(t) = ^T- D^h^^, [Eq. A. 14] 

which is obvious since D2(h   ) = \h, 
1,1 

The p.d.f, k(t)  of a busy period of length  t  is given by 

k(t) = Z  k (t). 
nsl 

[Eq. A. 1,5] 

Using Eq. A.5 we obtain 

k(t) = 
.-xt 

i:(-)nDn+2 rh^+l)(t) 
nsO '- 

[Eq, A,16] 

where h(n)(t) = h(n)(l, t) . 

As a check we now propose to obtain Eq, A,16 by alternative 

means.  The event  F  consisting of the beginning of a B.P. 

is recurrent for M/G/OB  and the probability of its occurrence 

in  (t, t + dt)  is  Xp0(t)dt, where  p0(t)  is the probability 

that a system intiated at  t =0 with one member will be 

empty at time t.  The interval between two successive 

occurrences has density function  Xk(t) -"- e   , and so 

Xp0(t) = Xk^e-
Xt + (xk*e-Xt)"[xp0(t)], [Eq. A,17) 

since  F  may occur for the  first time in  (t, t + dt), or 

may occur at a previous epoch. 
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If  TT0(Z)  and K(z)  are the Laplace transforms of  p0(t) 

and k(t), then Eq. A.17 is equivalent to 

(X+Z)TT0(Z) 
[Eq, A.18] 

This gives formally 

K(z) = Z (-X)n (X+Z)TT0
n+1(Z). 

nsO 
[Eq, A,19] 

Now it is well known  [e.g. Khintchine (Ref. 2)] that 

p0(t) = e       B - - 
-xt r 

Dlh(t) [Eq. A.20] 

where h(t) = h(l, t). 

If we write H(z)  for the Laplace transform of  h(t) it  follows 

immediately from Eq, A,20 that 

TT0(Z) -  (X+z) H(z+X)/X 

and hence that Eq. A.19 gives 

n+2 „n+1, 
K(z) = X"1 I  (-)" (X+z)n+Z H^z+X). 

naO 

56 



This transforms back  into 

k(t) - e-^ x-1 z (..)nD-+2 fh^n, 
n^O L     J 

which is Eq. A.16. 

Thus we have a check on the purely probabilistic arguments of 

the earlier paragraphs.  Because of Eq. A,l8 and the known 

properties of p0(t), we also observe from Eq. A.18 that 

k(t)dt = 1. 

The mean B.P. length is perhaps most expeditiously obtained 

from the relation, applicable to M/G/OB, that 

E(I) 

E(BP) +E(I) 
=  lim p0(t) = e"

p , 
t-too 

[Eq. A.21] 

where E(  )  means  "expected value of", and I denotes an 

idle period.  This gives 

E(BP) = -i (eP-1) , [Eq. A.22] 

where  p = X./E (service interval) 

! f 
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